Global weak solutions of the fractional Landau–Lifshitz–Maxwell equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak and Viscosity Solutions of the Fractional Laplace Equation

Aim of this paper is to show that weak solutions of the following fractional Laplacian equation { (−∆)su = f in Ω u = g in Rn \ Ω are also continuous solutions (up to the boundary) of this problem in the viscosity sense. Here s ∈ (0, 1) is a fixed parameter, Ω is a bounded, open subset of Rn (n > 1) with C2-boundary, and (−∆)s is the fractional Laplacian operator, that may be defined as (−∆)u(x...

متن کامل

Analytical solutions for the fractional Fisher's equation

In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables  method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...

متن کامل

Global Existence of Weak Solutions for the Burgers-Hilbert Equation

This paper establishes the global existence of weak solutions to the Burgers-Hilbert equation, for general initial data in L(IR). For positive times, the solution lies in L2∩L∞. A partial uniqueness result is proved for spatially periodic solutions, as long as the total variation remains locally bounded.

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation

We consider a generalized hyperelastic-rod wave equation (or generalized Camassa– Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R). We also present a “weak equals strong”uniqueness result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2010

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2010.06.035